Skip to content

Hypercube Analyitics Assets

These methods let you see what is available and how your dimensions, metrics and queries are defined in your hypercube.

Get Dimensions

cube.get_dimensions() -> List[str]

Returns a list of all available dimension columns across all tables.

Example:

# Get all available dimensions
all_dimensions = cube.get_dimensions()
print(f"Available dimensions: {all_dimensions}")

Get a Single Dimension's Values

This accessor now lives under Query Methods as cube.dimension(...).

cube.dimension(dimension: str) -> List[str]

Returns the distinct values for a given dimension.

Example:

# Get all distinct Product names
products = cube.dimension('Product')
print(products[:10])

Get Metrics

cube.get_metrics() -> Dict[str, Any]

Retrieve all defined metrics in the hypercube. Metrics are one of the core components of the hypercube, representing the calculated values and KPIs used for data analysis. Metrics encapsulate business logic, ensuring consistent calculations across all queries and reports.

Returns:

  • Dictionary of metrics with their details (name, expression, aggregation, and other properties)

Get a Single Metric

cube.get_metric(metric: str) -> Dict[str, Any]

Returns a single metric definition with its details.

Example:

revenue = cube.get_metric('Revenue')
print(revenue)

Get Computed Metrics

cube.get_computed_metrics() -> Dict[str, Any]

Retrieve all persisted computed metrics.

Returns:

  • Dictionary mapping computed metric names to specs: expression, optional fillna, and referenced columns

Get a Single Computed Metric

cube.get_computed_metric(computed_metric: str) -> Dict[str, Any]

Returns a single computed metric definition.

Example:

margin_pct = cube.get_computed_metric('Margin %')
print(margin_pct)

Get Queries

cube.get_queries() -> Dict[str, Any]

Returns:

  • Dictionary of queries with their dimensions, metrics, and display options

Get a Single Query

cube.get_query(query: str) -> Dict[str, Any]

Returns the definition for a single query (dimensions, metrics, computed_metrics, and options like having).

Example:

q = cube.get_query('Sales by Region')
print(q)